A saccharolytic action of insulin given orally with various synthetic polymers to rabbits was studied. Blood sugar level gave the greatest fall when insulin mixtures with strong electrolytes were used. In this case when the weight proportion of insulin-polymers was 1 : 5 insulin action was prolonged to 5 hours, addition of surfactants permitted to get an analogous saccharolytic effect with reduction of the insulin dose by half (50 AU per animal).

Download full-text PDF

Source

Publication Analysis

Top Keywords

insulin
5
[oral administration
4
administration insulin
4
insulin synthetic
4
synthetic polymers]
4
polymers] saccharolytic
4
saccharolytic action
4
action insulin
4
insulin orally
4
orally synthetic
4

Similar Publications

Purpose: Glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) and basal insulin are currently used in the treatment of type 2 diabetes mellitus (T2DM) as long-acting injectables. In this study, we aimed to compare the cardiovascular (CV) and renal outcomes of GLP-1 RAs and basal insulin treatment in patients with T2DM.

Method: We conducted a propensity score-matched cohort study of patients from Chang Gung Memorial Hospital institutions between 2013 and 2021.

View Article and Find Full Text PDF

Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites.

Food Funct

January 2025

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.

Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.

View Article and Find Full Text PDF

Objectives: Hyperandrogenism is a frequently recognized endocrine imbalance in which there is excessive production of androgens. The purpose of the study was to investigate the impact of vitamin D receptor (VDR) gene polymorphisms on chosen bone metabolism and biochemical parameters in women with hyperandrogenism.

Material And Methods: Eighty young females with hyperandrogenism were enrolled in the study, in whom selected parameters of bone turnover, endocrine and metabolic parameters were determined.

View Article and Find Full Text PDF

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Background: Cardiovascular disease is a major cause of increasing morbidity and mortality in type 1 diabetes mellitus (T1DM). Although insulin therapy is the cornerstone of T1DM, its difficult use and narrow therapeutic index make it difficult for patients to reach glycated haemoglobin targets, increasing the risk of cardiovascular events. Therefore, the combination of sodium-glucose transporter 2 inhibitors (SGLT2i) can likely improve or provide more cardiovascular benefits to patients with T1DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!