Download full-text PDF

Source

Publication Analysis

Top Keywords

[computer processing
4
processing rational
4
rational selection
4
selection materials
4
materials pharmaceutical
4
pharmaceutical equipment]
4
[computer
1
rational
1
selection
1
materials
1

Similar Publications

Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.

Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.

View Article and Find Full Text PDF

scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.

BMC Bioinformatics

January 2025

Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.

View Article and Find Full Text PDF

Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.

View Article and Find Full Text PDF

In general, edge computing networks are based on a distributed computing environment and hence, present some difficulties to obtain an appropriate load balancing, especially under dynamic workload and limited resources. The conventional approaches of Load balancing like Round-Robin and Threshold-based load balancing fails in scalability and flexibility issues when applied to highly variable edge environments. To solve the problem of how to achieve steady-state load balance and provide dynamic adaption to edge networks, this paper proposes a new framework that using PCA and MDP.

View Article and Find Full Text PDF

Analog In-memory Computing (IMC) has demonstrated energy-efficient and low latency implementation of convolution and fully-connected layers in deep neural networks (DNN) by using physics for computing in parallel resistive memory arrays. However, recurrent neural networks (RNN) that are widely used for speech-recognition and natural language processing have tasted limited success with this approach. This can be attributed to the significant time and energy penalties incurred in implementing nonlinear activation functions that are abundant in such models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!