Download full-text PDF

Source

Publication Analysis

Top Keywords

interstimulus interval
4
interval amplitude
4
amplitude evoked
4
evoked acoustic
4
acoustic response
4
response habituation
4
habituation phenomenon
4
interstimulus
1
amplitude
1
evoked
1

Similar Publications

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Purpose: The background of this scoping review is that pediatric neurosurgery in the vicinity of motor pathways is associated with the risk of motor tract damage. By measuring transcranial electrical evoked potentials in muscles (electromyogram) or from the spinal cord (epidural D-wave) functional disorders and impending damage can be detected during surgery and countermeasures can be initiated. The objective was to summarize stimulation techniques of transcranial electrical stimulation and the success rate of motor evoked potentials exclusively in children undergoing neurosurgery.

View Article and Find Full Text PDF

The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (∼150-500 ms), where the N1 amplitude increases.

View Article and Find Full Text PDF
Article Synopsis
  • A new technique called high-PAS combines high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) to potentially enhance motor function in patients with incomplete spinal cord injuries.
  • The interstimulus interval (ISI) in high-PAS allows for flexibility, making it easier to implement in clinical settings where precise timing is tough, but this also creates challenges for measuring its effectiveness.
  • Research with ten healthy participants showed that high-PAS improved motor-evoked potentials (MEPs) and significantly increased spinal excitability (measured by H-reflex amplitudes) during spinal-targeted sessions, but not in cortical-targeted sessions.
View Article and Find Full Text PDF

Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!