Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(71)90266-8DOI Listing

Publication Analysis

Top Keywords

structural requirements
4
requirements uncoupling
4
uncoupling oxidative
4
oxidative phosphorylation
4
phosphorylation nn'-bisdichloroacetyl
4
nn'-bisdichloroacetyl diamines
4
structural
1
uncoupling
1
oxidative
1
phosphorylation
1

Similar Publications

Advances in Radiation Oncology in Soft Tissue Sarcoma.

Curr Oncol Rep

January 2025

Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA.

Purpose: To review recent advances with radiation therapy (RT) for soft tissue sarcomas (STS).

Recent Findings: Newer data showcases hypofractionated preoperative RT for soft tissue sarcomas treated with surgery to be safe and effective, however, long-term follow up data is pending. Hypofractionated and dose-escalated RT in patients with unresectable STS is also being studied, for which we remain optimistic given advances in RT planning approaches.

View Article and Find Full Text PDF

Long-read sequencing has emerged as a transformative technology in recent years, offering significant potential for the molecular diagnosis of unresolved genetic disorders. Despite its promise, the comprehensive detection and clinical annotation of genomic variants remain intricate and technically demanding. We present SUMMER, an integrated and structured workflow specifically designed to process raw Nanopore sequencing reads.

View Article and Find Full Text PDF

CDK5: Insights into its roles in diseases.

Mol Biol Rep

January 2025

Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.

Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.

View Article and Find Full Text PDF

DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!