Download full-text PDF

Source

Publication Analysis

Top Keywords

automated colorimetric
4
colorimetric determination
4
determination phenylephrine
4
phenylephrine hydrochloride
4
hydrochloride drug
4
drug formulations
4
formulations collaborative
4
collaborative study
4
automated
1
determination
1

Similar Publications

Phytochemical and Biological Investigations of Crude Extracts of .

Pharmaceuticals (Basel)

December 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey.

: L. is a genus of the Fabaceae family, encompassing over 3000 species globally, with 380 species found in Turkey. This is the inaugural examination of the phytochemical, antioxidant, antibacterial, and cytotoxic properties of .

View Article and Find Full Text PDF

For optimizing production yield while limiting negative environmental impact, sustainable agriculture benefits from real-time, on-the-spot chemical analysis of soil at low cost. Colorimetric paper sensors are ideal candidates, however, their automated readout and analysis in the field is needed. Using mobile technology for paper sensor readout could, in principle, enable the application of machine-learning models for transforming colorimetric data into threshold-based classes that represent chemical concentration.

View Article and Find Full Text PDF

Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Background: One method for noninvasive and simple urinary microalbumin testing is urine test strips. However, when visually assessing urine test strips, accurate assessment may be difficult due to environmental influences-such as lighting color and intensity-and the physical and psychological influences of the assessor. These complicate the formation of an objective assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!