The kinetics of the influx and efflux of radioactive l-glycine was studied in slices of rat cerebral cortex. The influx showed saturation kinetics and was inhibited by l-alanine. Influx was dependent on the presence of Na(+) ions and a metabolizable substrate. The efflux of glycine was accelerated by alanine. It was concluded that carrier-mediated facilitated diffusion was the mechanism of glycine uptake by, and efflux from, cerebral slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1178048PMC
http://dx.doi.org/10.1042/bj1250255DOI Listing

Publication Analysis

Top Keywords

uptake efflux
8
efflux glycine
8
glycine rat
4
rat cerebral-cortex
4
cerebral-cortex slices
4
slices kinetics
4
kinetics influx
4
influx efflux
4
efflux radioactive
4
radioactive l-glycine
4

Similar Publications

Jasmonic acid improves cadmium tolerance in rice (Oryza sativa) by reducing the production of nitric oxide.

Ecotoxicol Environ Saf

January 2025

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China. Electronic address:

The involvement of jasmonic acid (JA) in the rice's response to cadmium (Cd) stress is well recognized, though the underlying mechanisms remain unclear. In this study, exposure to Cd stress rapidly elevated endogenous JA concentrations in rice roots, meanwhile, a mutant coleoptile photomorphogenesis 2 (cpm2) which produces less JA, was more sensitive to Cd stress than its wild type (WT). JA mitigated Cd toxicity by decreasing Cd absorption in root cell wall and shoot, which was achieved by up-regulating the expression of the Cd-chelation and efflux-related genes such as OsHMA3, OsABCG36 and OsCAL1; down-regulating the transcript level of the Cd uptake and translocation-related genes, including OsHMA2, OsCCX2, OsNRAMP1/5, and OsZIP5/7.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.

Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.

View Article and Find Full Text PDF

Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!