Download full-text PDF

Source
http://dx.doi.org/10.1148/101.3.705DOI Listing

Publication Analysis

Top Keywords

acquiring installing
4
installing maintaining
4
maintaining radiologic
4
radiologic equipment
4
acquiring
1
maintaining
1
radiologic
1
equipment
1

Similar Publications

Objective: This study aims to elucidate the impact of varying tourniquet application timings on postoperative pain and the bone cement interface following TKA.

Method: Patients who underwent TKA in our department between March 2021 and July 2023 were included in this study. They were randomly assigned to three groups: Group 1 used tourniquets throughout the operation, Group 2 applied tourniquets before the osteotomy, and Group 3 applied tourniquets after completing the osteotomy.

View Article and Find Full Text PDF

Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.

View Article and Find Full Text PDF

Objective: Computing the trajectories of mandibular condyles directly from MRI could provide a comprehensive examination, providing both anatomical and kinematic details. This study aimed to investigate the feasibility of extracting 3D condylar trajectories from 2D real-time MRI.

Materials And Methods: Twenty healthy subjects underwent real-time MRI while performing jaw opening and closing movements.

View Article and Find Full Text PDF

This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.

View Article and Find Full Text PDF

Long time series of velocity profiles collected by up-looking acoustic profilers in the westernmost sill of the Strait of Gibraltar show an unexpected pattern in the deepest ∼80 m of the water column, consisting in an appreciable diurnal weakening of the measured horizontal velocity. A harmonic analysis performed on long time series reveals a surprising magnitude of S constituent (exactly 1 cpd of frequency) in the horizontal velocity and echo amplitude, which prevails over the rest of diurnal constituents within this depth range, including K, despite being around 200 times smaller than it in the tide generating potential. High resolution echograms collected by a new instrument recently installed in the mooring line, point at the diel vertical migration of living acoustic scatterers (zooplankton) as the most reasonable cause.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!