A procedure for isolation of adenylate deaminase from duck heart muscle has been developed. The method includes extraction of enzyme, chromatography on cellulose phosphate, fractionation by ammonium sulfate, chromatography on Sephadex G-25 and ion-exchange chromatography on DEAE-cellulose. The enzyme was purified approximately 4000-fold with a yield of 25%. Electrophoresis in polyacrylamide gel revealed that the enzyme contains no proteins other than adenylate deaminase. The enzyme has a UV absorption spectrum typical for proteins which contain no nucleic acid impurities. Using sievorptive chromatography, it was shown that the myocardial extract contains two adenylate deaminase forms, which are tetramers with mol. weights of 190 000 and 240 000. The molecular weights of the subunits are 47 000 and 63 000, respectively. In the oligomeric form the enzyme is only detected at high enzyme concentrations and in the presence of large amounts of substrate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

adenylate deaminase
12
enzyme
6
[purification physico-chemical
4
physico-chemical properties
4
properties myocardial
4
adenylate
4
myocardial adenylate
4
adenylate deaminase]
4
deaminase] procedure
4
procedure isolation
4

Similar Publications

Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis.

Immunol Rev

January 2025

Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.

View Article and Find Full Text PDF

Acute intermittent porphyria (AIP) is a rare inherited metabolic disorder caused by decreased activity of the enzyme porphobilinogen deaminase in the heme synthesis pathway. This leads to the accumulation of toxic porphyrin precursors, such as porphobilinogen and δ-aminolevulinic acid. Clinical manifestations typically include episodic bouts of severe neurovisceral pain and autonomic dysfunction.

View Article and Find Full Text PDF

Background: The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers.

View Article and Find Full Text PDF

Background: Hypoxanthine, prevalent in animals and plants, is used in the production of food additives, nucleoside antiviral drugs, and disease diagnosis. Current biological fermentation methods synthesize quantities insufficient to meet industrial demands. Therefore, this study aimed to develop a strain capable of industrial-scale production of hypoxanthine.

View Article and Find Full Text PDF

The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity.

Cell

December 2024

Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA. Electronic address:

Article Synopsis
  • Type III CRISPR systems protect against genetic threats by producing cyclic oligo-adenylate (cA) that activates effector proteins with CRISPR-associated Rossman fold (CARF) domains.
  • Researchers studied an effector called CRISPR-associated adenosine deaminase 1 (Cad1), which converts ATP to ITP when cA binds to its CARF domain.
  • Structural analysis showed Cad1 forms a hexameric assembly and, when activated by cA during a viral infection, it causes a growth arrest in the host, preventing viral replication and demonstrating diverse immune mechanisms in prokaryotes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!