Download full-text PDF

Source

Publication Analysis

Top Keywords

[myocardial metabolism
4
metabolism long-term
4
long-term work]
4
[myocardial
1
long-term
1
work]
1

Similar Publications

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.

View Article and Find Full Text PDF

Study Objective: Hypertrophic cardiomyopathy (HCM) is the most common genetic myocardial disorder increasingly characterized by concomitant metabolic syndrome. Cardiac rehabilitation (CR) has been shown to improve metabolic parameters in populations with heart failure and myocardial infarction. However, there is a paucity of data on the impact of CR in the HCM population with metabolic syndrome.

View Article and Find Full Text PDF

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

Clinical utility of myocardial work assessment in arterial hypertension and cardiovascular diseases.

Minerva Cardiol Angiol

January 2025

Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.

In clinical practice, ventricular ejection fraction (EF) and global longitudinal strain (GLS) are the most often used parameters for evaluating left ventricular systolic function, despite the impact that variable loading conditions have. Alternatively, the myocardial efficiency (ME) of the heart, encompassing cardiac energy formation and dissipation, along with myocardial oxygen consumption (MVO2), is a useful surrogate for assessing myocardial work (MW), a parameter correlated with the pressure-strain loop (PSL), arterial pressure, and cardiac output (CO). This refinement proves especially practical in defining cardiac work across various clinical contexts, including arterial hypertension and heart failure (HF), the primary conditions associated with cardiovascular mortality.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!