Download full-text PDF

Source
http://dx.doi.org/10.1037/h0033277DOI Listing

Publication Analysis

Top Keywords

frustration phenomena
4
phenomena paired-associate
4
paired-associate learning
4
frustration
1
paired-associate
1
learning
1

Similar Publications

Metal-organic frameworks (MOFs) are a fascinating class of structured materials with diverse functionality originating from the distinctive physicochemical properties. This review focuses on the specific chemical design of geometrically frustrated MOFs along with the origin of the intriguing magnetic properties. We have discussed the arrangement of spin centres (metal and ligand) which are responsible for the unusual magnetic phenomena in MOFs.

View Article and Find Full Text PDF

Epitaxial Stabilization of a Pyrochlore Interface between Weyl Semimetal and Spin Ice.

Nano Lett

January 2025

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF

Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice.

View Article and Find Full Text PDF

Coordination networks based on lanthanide ions entangle collective magnetic phenomena, otherwise only observed in inorganic 4f materials, and the tunable spatial and electronic structure engineering intrinsic to coordination chemistry. In this review, we discuss the use of 2D-structure-directing linear {LnI} nodes to direct the formation of polymeric coordination networks. The equatorial coordination plasticity of {LnI} results in broad structural diversity, including previously unobtainable tessellations containing motifs observed in quasicrystalline tilings.

View Article and Find Full Text PDF

Chiral spin-liquid-like state in pyrochlore iridate thin films.

Nat Commun

November 2024

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.

Article Synopsis
  • Pyrochlore iridates are notable for studying complex phenomena due to their strong spin-orbit coupling, electronic interactions, and geometrically frustrated lattice structures.
  • In thin films of (111) YIrO with thicknesses ≤30 nm, researchers found a unique quantum disordered state at temperatures as low as 5 K, which was characterized by dispersionless magnetic excitations.
  • Below approximately 125 K, an anomalous Hall effect suggests the existence of chiral spin configurations, attributed to magnetic frustration in the lower-dimensional structure that leads to spin-liquid behavior without long-range order.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!