Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(01)80688-9DOI Listing

Publication Analysis

Top Keywords

direct quantification
4
quantification micro-thin-layer
4
micro-thin-layer chromatograms
4
direct
1
micro-thin-layer
1
chromatograms
1

Similar Publications

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification.

Materials (Basel)

January 2025

Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.

A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.

View Article and Find Full Text PDF

In the year 2019, a highly virulent coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, precipitating the outbreak of the illness known as coronavirus disease 2019 (COVID-19). The commonly employed reverse transcription polymerase chain reaction (RT-qPCR) methodology serves to estimate the viral load in each patient's sample by employing a standard curve. However, it is imperative to recognize that this technique exhibits limitations with respect to clinical diagnosis and therapeutic applications, since an advancement of the conventional polymerase chain reaction methods, digital polymerase chain reaction (digital PCR or DDPCR), enables the direct quantification and clonal amplification of nucleic acid strands.

View Article and Find Full Text PDF

Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes.

View Article and Find Full Text PDF

Direct Determination of Flavanone Isomers in Citrus Juice by Paper Spray Tandem Mass Spectrometry.

Antioxidants (Basel)

December 2024

Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci Cubo 12/D, I-87030 Rende, CS, Italy.

A novel and efficient analytical protocol based on paper spray tandem mass spectrometry was developed for the determination of isomeric -glycoside flavanones in citrus juices and beverages. This approach significantly reduces sample preparation time and solvent consumption compared to traditional chromatographic techniques. By exploiting the unique fragmentation patterns of these compounds, accurate quantification of both diglycosides and their individual isomers (neohesperidoside and rutinose derivatives) was achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!