Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-291x(72)90810-8 | DOI Listing |
Molecules
November 2024
Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
This study explores the liquid crystalline properties of novel amphiphilic β-cyclodextrin derivatives functionalized with seven oligoethylene glycol chains at the primary face, terminated with either an O-methyl or an O-cyanoethyl group, and fourteen hydrophobic aliphatic chains (elaidic or oleic acids) at the secondary face. These derivatives were designed to study the impact of chain conformation and terminal group polarity on their mesomorphic behavior. Thermal, microscopic, and X-ray diffraction studies revealed that the elaidic derivatives form columnar hexagonal mesophases, with the O-cyanoethyl derivative undergoing a slow, temperature-dependent transition to a bicontinuous cubic phase.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France.
We recorded and analyzed the microwave spectra of 2,5-dimethylanisole using a pulsed molecular jet Fourier transform microwave spectrometer and the newly developed Passage And Resonant-Impulse Synergy spectrometer across a frequency range of 2-26.5 GHz with support from quantum chemical calculations. Only one conformer was predicted and observed, where the methoxy group and its adjacent methyl group adopt anti-positions.
View Article and Find Full Text PDFMar Drugs
November 2024
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
Biochemistry
December 2024
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFNutrients
October 2024
Intestinal Sensing Group, The University of Adelaide, Adelaide, SA 5005, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!