Temperature-sensitive mutants of phage alpha were subjected to short pulses of permissive temperature at various times during the lytic cycle. All the mutants showed an optimal response to the permissive pulse at a specific time after infection. The optimal responses of the mutants belonging to the same complementation group fell close together in the same time interval; the optimal responses of mutants contained in 20 different complementation groups were more or less uniformly scattered throughout the lytic cycle. Temperature sensitivity, therefore, seems to afford, at least in the case of phage alpha, an independent way of grouping the genes in an ordered sequence with respect to the steps they control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC375346PMC
http://dx.doi.org/10.1128/JVI.1.4.717-722.1967DOI Listing

Publication Analysis

Top Keywords

phage alpha
8
lytic cycle
8
optimal responses
8
responses mutants
8
chronology viral
4
viral functions
4
functions bacteriophage
4
bacteriophage alpha
4
alpha temperature-sensitive
4
mutants
4

Similar Publications

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.

View Article and Find Full Text PDF

Effectiveness of newly isolated bacteriophages targeting multidrug-resistant Extraintestinal Pathogenic Escherichia coli strain (TZ1_3) in food preservation and mice health modulation.

Food Chem

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:

Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

February 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!