Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-291x(65)90339-6 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis.
View Article and Find Full Text PDFEMBO J
January 2025
Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA for homologous recombination. In Saccharomyces cerevisiae meiosis, this resection involves nicking by the Mre11-Rad50-Xrs2 complex (MRX), then exonucleolytic digestion by Exo1. Chromatin remodeling at meiotic DSBs is thought necessary for resection, but the remodeling enzyme was unknown.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages.
View Article and Find Full Text PDFNature
November 2024
Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Nat Commun
September 2024
Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
Cytoplasmic mRNA decay is effected by exonucleolytic degradation in either the 5' to 3' or 3' to 5' direction. Pervasive terminal uridylation is implicated in mRNA degradation, however, its functional relevance for bulk mRNA turnover remains poorly understood. In this study, we employ genome-wide 3'-RACE (gw3'-RACE) in the model system fission yeast to elucidate the role of uridylation in mRNA turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!