Download full-text PDF |
Source |
---|
Biomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFJ Biol Chem
November 2024
Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation.
View Article and Find Full Text PDFPediatr Neurol
January 2025
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
Background: Lipoyl transferase 2 is involved in the biosynthesis of lipoate. Lipoate is the cofactor for the glycine cleavage system and four dehydrogenase enzymes. Biallelic variants in LIPT2 causing severe neonatal encephalopathy was first described in 2017.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.
A robust method is described to synthesize degradable copolymers under aqueous miniemulsion conditions using α-lipoic acid as a cheap and scalable building block. Simple formulations of α-lipoic acid (up to 10 mol %), -butyl acrylate, a surfactant, and a costabilizer generate stable micelles in water with particle sizes <200 nm. The ready availability of these starting materials facilitated performing polymerization reactions at large scales (4 L), yielding 600 g of poly(-butyl acrylate--α-lipoic acid) latexes that degrade under reducing conditions (250 kg mol → 20 kg mol).
View Article and Find Full Text PDFACS Macro Lett
November 2024
Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The development of renewable vinyl-based photopolymer resins offers a promising solution to reducing the environmental impact associated with 3D printed materials. This study introduces a bifunctional lipoate cross-linker containing a dynamic disulfide bond, which is combined with acrylic monomers (-butyl acrylate) and conventional photoinitiators to develop photopolymer resins that are compatible with commercial stereolithography 3D printing. The incorporation of disulfide bonds within the polymer network's backbone imparts the 3D printed objects with self-healing capabilities and complete degradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!