Treatment of Escherichia coli 30S ribosomal subunits with trypsin sequentially removes a number of different ribosomal proteins, as revealed by polyacrylamide gel electrophoresis. Proteins that are removed early by trypsin correlate well with those that are added last during reconstitutive assembly of the 30S subunit from 16S ribosomal RNA and the total protein complement. Proteins that are resistant to removal from the subunit by the highest trypsin concentration used correlate with those that are added early during assembly. Six proteins can be removed from the subunit with trypsin without affecting its ability to bind the antibiotic streptomycin. A decline in the ability of the 30S subunit to bind streptomycin is correlated with the removal of either one, or both, of two proteins, neither one of which is the gene product of the streptomycin locus. The implications of these findings for the topography and assembly of the 30S subunit are considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC283355PMC
http://dx.doi.org/10.1073/pnas.67.3.1321DOI Listing

Publication Analysis

Top Keywords

30s subunit
12
escherichia coli
8
coli 30s
8
30s ribosomal
8
proteins removed
8
assembly 30s
8
subunit
6
30s
5
proteins
5
topography escherichia
4

Similar Publications

In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Secretion of beta human chorionic gonadotropin (β-hCG) is a rare, recently recognised paraneoplastic syndrome. Herein, we present a case of a woman in her 30s with right femur conventional high-grade osteosarcoma and a positive screening urine pregnancy test. Subsequent workup failed to reveal an intrauterine or extrauterine pregnancy.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

The proline-rich antimicrobial designer peptide Api137 inhibits protein expression in bacteria by binding simultaneously to the ribosomal polypeptide exit tunnel and the release factor (RF), depleting the cellular RF pool and leading to ribosomal arrest at stop codons. This study investigates the additional effect of Api137 on the assembly of ribosomes using an Escherichia coli reporter strain expressing one ribosomal protein per 30S and 50S subunit tagged with mCherry and EGFP, respectively. Separation of cellular extracts derived from cells exposed to Api137 in a sucrose gradient reveals elevated levels of partially assembled and not fully matured precursors of the 50S subunit (pre-50S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!