Bunker C fuel oil reduces mallard egg hatchability.

Bull Environ Contam Toxicol

Published: August 1979

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02027015DOI Listing

Publication Analysis

Top Keywords

bunker fuel
4
fuel oil
4
oil reduces
4
reduces mallard
4
mallard egg
4
egg hatchability
4
bunker
1
oil
1
reduces
1
mallard
1

Similar Publications

Establishing emission control areas (ECAs) can effectively reduce air pollution from marine emissions, making efficient monitoring of the fuel sulfur content (FSC) of ocean-going vessels (OGVs) key to ECA policy enforcement. Various FSC detection approaches, including oil sample analysis, sniffing method, and optical remote sensing, have been proposed, each with its benefits and drawbacks. Among these, the sniffing method appears promising but requires further improvement in field operation protocol and data analysis processes.

View Article and Find Full Text PDF

Synthetic oil spill dispersants have become essential in offshore oil spill response strategies. However, their use raises significant concerns regarding toxicity to phyto- and zooplankton and other marine organisms, especially in isolated and vulnerable areas such as the Arctic and shorelines. Sustainable alternatives may be developed by replacing the major active components of commercial dispersants with their natural counterparts.

View Article and Find Full Text PDF

Dairy farms in the United States have changed in many ways over the past 50 yr. Milk production efficiency has increased greatly, with ∼30% fewer cows producing about twice the amount of milk today. Other improvements include increases in crop yields, fuel efficiency of farm equipment, and efficiency in producing most resources used on farms (e.

View Article and Find Full Text PDF

In the present study, through the laboratory-to-field scale experiments and trials, we report the development and evaluation of an integrated oil-spill response system capable of oil collection, recovery (separation), and storage, for a timely and effective response to the initial stage of oil-spill accidents. With the laboratory-scale experiments, first, we evaluate that the water-surface waves tend to abate the oil recovery rate below 80% (it is above 95% for the optimized configuration without the waves), which is overcome by installing the hydrophilic (and oleophobic) porous structures at the inlet and/or near the water outlet of the separator. In the follow-up meso-scale towing tank tests with a scaled-up prototype, (i) we optimize the maneuverability of the assembled system depending on the speed and existence of waves, and (ii) evaluate the oil recovery performance (more than 80% recovery for the olive oil and Bunker A fuel oil).

View Article and Find Full Text PDF

Characterization of the physical and weathering properties of low sulfur fuel oil (LSFO) and its spreading on water surface.

J Hazard Mater

July 2023

Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Effective countermeasures against the marine pollution caused by spilled oil are enabled based on the understanding of its physical and weathering characteristics. In that sense, our knowledge of the newly enforced low-sulfur fuel oil (LSFO) needs to be secured urgently. First, we show that the oil viscosity increases with decreasing temperature, following the William-Landel-Ferry law developed for bunker oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!