Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(74)80754-4DOI Listing

Publication Analysis

Top Keywords

characterization particulate
4
particulate replicative
4
replicative structure
4
structure sindbis
4
sindbis virus
4
virus infected
4
infected cells
4
characterization
1
replicative
1
structure
1

Similar Publications

Background: Evidence for a relation between residential greenspace and respiratory health is scarce and controversial.

Objectives: The purpose of this study was to explore the association between residential greenspace and its interaction with particulate matter (PM) and risk of chronic obstructive pulmonary disease (COPD) and lung function.

Methods: A total of 3,759 adults were recruited from Wenzhou in this study.

View Article and Find Full Text PDF

This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.

View Article and Find Full Text PDF

Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress.

Int J Mol Sci

January 2025

School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China.

Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).

View Article and Find Full Text PDF

Evaluating the Laboratory Performance of Pellet-Fueled Semigasifier Cookstoves.

Environ Sci Technol

January 2025

Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.

This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.

View Article and Find Full Text PDF

PM/PM ratios in southernmost Brazilian cities and its relation with economic contexts and meteorological factors.

Environ Monit Assess

January 2025

Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil.

The PM/PM ratio is a metric used to distinguish the primary sources of particulate matter (PM) within a given environment. Higher ratios often indicate significant contributions from anthropogenic sources, while smaller ratios suggest a substantial influence from natural origins. However, various contextual factors can influence this ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!