Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0021-9290(74)90058-x | DOI Listing |
J Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFEchocardiography
February 2025
Cardiology Department, Gazi University Hospital, Yenimahalle, Ankara, Turkey.
Background: Idiopathic right bundle branch block (RBBB) is often seen as harmless and common. However, many studies show it might be linked to negative health outcomes. So, it is crucial to fully understand how RBBB affects the heart's ventricles.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China.
Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!