Download full-text PDF

Source

Publication Analysis

Top Keywords

enhancement radiation
4
radiation transformed
4
transformed fibroblastic
4
fibroblastic cells
4
cells synergistic
4
synergistic combination
4
combination 5-fluorouracil
4
5-fluorouracil polyenes
4
polyenes vitro
4
enhancement
1

Similar Publications

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Non-medicinal oral contrast in upper abdominal MRI for MR-guided radiotherapy: A scoping review.

Radiography (Lond)

January 2025

Radiotherapy, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.

Introduction: Using non-medicinal oral contrast agents may aid safe delivery of magnetic resonance image-guided (MR-guided) radiotherapy by improving the ability to visualise and avoid excessive radiation dose to adjacent bowel/stomach. This scoping review aims to map the literature on non-medicinal oral contrasts used in upper-abdominal diagnostic or therapeutic magnetic resonance imaging (MRI) to find potential candidates for employing in MR-guided radiotherapy and identify gaps in knowledge for further study.

Methods: A scoping review of non-medicinal oral contrast used in upper-abdominal MRI research followed a pre-defined protocol based on Arksey and O'Malley's framework.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

This document provides a comprehensive analysis of the use of point-of-care ultrasound in heart failure (HF), offering detailed recommendations on echocardiography, lung ultrasound, and venous ultrasound. These advanced imaging techniques allow for an accurate, detailed, and non-invasive evaluation of heart failure, facilitating rapid and effective clinical decision-making. Echocardiography enables a rapid assessment of cardiac function at the point of care, enhancing traditional physical examination and being essential for the management of heart failure (HF).

View Article and Find Full Text PDF

Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!