Download full-text PDF

Source

Publication Analysis

Top Keywords

studies absorption
4
absorption rapeseed
4
rapeseed oil
4
oil digestive
4
digestive tract
4
tract absorption
4
absorption ethyl
4
ethyl ester
4
ester erucic
4
erucic acid
4

Similar Publications

Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.

View Article and Find Full Text PDF

1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.

View Article and Find Full Text PDF

The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.

View Article and Find Full Text PDF

Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .

View Article and Find Full Text PDF

Gallium: A Universal Promoter Switching CO Methanation Catalysts to Produce Methanol.

JACS Au

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zurich, Switzerland.

Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!