Download full-text PDF

Source
http://dx.doi.org/10.1097/00004032-197310000-00002DOI Listing

Publication Analysis

Top Keywords

estimation gamma-ray
4
gamma-ray natural
4
natural background
4
background radiation
4
radiation dose
4
dose urban
4
urban population
4
population western
4
western australia
4
estimation
1

Similar Publications

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Radioactive cesium released into the atmosphere caused by the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 has contaminated the surrounding area. We confirmed the applicability of in-situ methods to evaluate the depth distribution of Cs by employing the ratio of Compton-scattering and photo-peak components (r) obtained from measured gamma-ray spectra. In the present study, we applied the in-situ method to farmlands in Fukushima Prefecture whose sites were disturbed by decontamination and plowing operations.

View Article and Find Full Text PDF

Machine learning techniques for the prediction of indoor gamma-ray dose rates - Strengths, weaknesses and implications for epidemiology.

J Environ Radioact

December 2024

Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, DHHS, NIH, Bethesda, MD, 20892-9778, USA; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK. Electronic address:

We investigate methods that improve the estimation of indoor gamma ray dose rates at locations where measurements had not been made. These new predictions use a greater range of modelling techniques and larger variety of explanatory variables than our previous examinations of this subject. Specifically, we now employ three types of machine learning models in addition to the geostatistical, nearest neighbour and other earlier models.

View Article and Find Full Text PDF

Development of anticoincidence detector specializing in small-angle Compton scattering gamma rays for boron neutron capture therapy.

Appl Radiat Isot

December 2024

Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.

A novel anticoincidence detector is proposed for the measurement of 478 keV gamma radiation for evaluation of boron neutron capture therapy. The Compton continuum around the target photopeak position is effectively suppressed by measuring only the Compton gamma rays scattered at small angles from the primary detector. A numerical evaluation using Monte Carlo simulations estimated an 80% reduction in counts, and the developed prototype detector showed 4% suppression of the Compton continuum of cobalt-60 gamma rays.

View Article and Find Full Text PDF

We previously reported endogenous activation of the DNA damage response (DDR) in the epidermis surrounding basal cell carcinoma resected from Nagasaki atomic bomb survivors, suggesting the presence of genomic instability (GIN) in the survivors as a late effect of radiation. Dual-color immunofluorescence (IF) analysis of TP53-binding protein-1 (53BP1) and a proliferative indicator, Ki-67, to elucidate GIN in tumor tissues revealed that abnormal 53BP1 expression is closely associated with carcinogenesis in several organs. The present study aimed to confirm the presence of radiation-induced GIN in the non-neoplastic epidermis of patients with radiation-induced skin cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!