Download full-text PDF

Source

Publication Analysis

Top Keywords

[enzymatic isomerization
4
isomerization 2-acetamido-2-deoxy-d-glucono-15-lactone
4
2-acetamido-2-deoxy-d-glucono-15-lactone n-acetyl-beta-d-glucosamindidase]
4
[enzymatic
1
2-acetamido-2-deoxy-d-glucono-15-lactone
1
n-acetyl-beta-d-glucosamindidase]
1

Similar Publications

As the chip of synthetic biology, enzymes play a vital role in the bio-manufacturing industry. The development of diverse functional enzymes can provide a rich toolbox for the development of synthetic biology. This article reports the construction of an artificial enzyme with the introduction of a non-natural cofactor.

View Article and Find Full Text PDF

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

Unleashing the innate ability of Escherichia coli to produce D-Allose.

Metab Eng

January 2025

Biochemistry, Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, CA, 95616, USA; Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA. Electronic address:

D-allose is a rare monosaccharide, found naturally in low abundances. Due to its low-calorie profile and similar taste to sucrose, D-allose has the potential to become an ideal sugar substitute. D-allose also displays unique properties and health benefits that can be applied to various fields, including food and medicine.

View Article and Find Full Text PDF

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

Selection of a Fluorinated Aptamer Targeting the Viral RNA Frameshift Element with Different Chiralities.

Biochemistry

January 2025

Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.

The development of RNA aptamers with high specificity and affinity for target molecules is a critical advancement in the field of therapeutic and diagnostic applications. This study presents the selection of a 2'-fluoro-modified mirror-image RNA aptamer through the in vitro SELEX process. Using a random RNA library, we performed iterative rounds of selection and amplification to enrich aptamers that bind specifically to the viral attenuator hairpin RNA containing the opposite chirality, which is an important part of the frameshift element.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!