Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect gravitation
4
gravitation stresses
4
stresses hypokinesia
4
hypokinesia hypodynamia
4
hypodynamia structure
4
structure splenic
4
splenic vascular
4
vascular bed]
4
[effect
1
stresses
1

Similar Publications

Expression of MMP1, MMP3, and TIMP1 in intervertebral discs under simulated overload and microgravity conditions.

J Orthop Surg Res

January 2025

Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.

Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.

Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI).

View Article and Find Full Text PDF

The role of the LINC complex in ageing and microgravity.

Mech Ageing Dev

January 2025

Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, Amsterdam 1081 LA, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, Noordwijk 2201 AZ, the Netherlands.

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!