Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(73)91451-4DOI Listing

Publication Analysis

Top Keywords

direct control
4
control calcium
4
calcium 25-hydroxycholecalciferol-1-hydroxylase
4
25-hydroxycholecalciferol-1-hydroxylase activity
4
activity chick
4
chick kidney
4
kidney mitochondria
4
direct
1
calcium
1
25-hydroxycholecalciferol-1-hydroxylase
1

Similar Publications

Controlling the energies of the single-rotor large wind turbine system using a new controller.

Sci Rep

January 2025

Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.

In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.

View Article and Find Full Text PDF

The α-globin super-enhancer acts in an orientation-dependent manner.

Nat Commun

January 2025

Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.

Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested.

View Article and Find Full Text PDF

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Time Code for multifunctional 3D printhead controls.

Nat Commun

January 2025

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.

View Article and Find Full Text PDF

Background: Extracorporeal Cardiopulmonary Resuscitation (ECPR) is an effective intervention for restoring adequate circulatory perfusion after cardiac arrest. Ensuring high-quality Cardiopulmonary Resuscitation (CPR) before initiating Extracorporeal Membrane Oxygenation (ECMO) is critical to mitigate tissue hypoxia and ischemia. This study aimed to evaluate the effect of End-Tidal Carbon Dioxide (ETCO) Goal-Directed CPR (GDCPR) on neurological function before ECMO using a retrospective case-control analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!