Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00729a019DOI Listing

Publication Analysis

Top Keywords

synthesis ribonucleic
4
ribonucleic acid
4
acid 6-thioguanylic
4
6-thioguanylic acid
4
acid residues
4
acid
2
synthesis
1
6-thioguanylic
1
residues
1

Similar Publications

gene mutation through CRISPR RNA-guided base editing weakens bacterial virulence and immune evasion.

Virulence

December 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

The resistance of commonly used clinical antibiotics, such as daptomycin (DAP), has become increasingly serious in the fight against () infection. It is essential to explore key pathogenicity-driven genes/proteins in bacterial infection and antibiotics resistance, which contributes to develop novel therapeutic strategies against infections. The gene of , encoding 5'-nucleotidase (NT5), is nearly unknown for its function in drug resistance and bacterial infection.

View Article and Find Full Text PDF

Twenty years of advances in prediction of nucleic acid-binding residues in protein sequences.

Brief Bioinform

November 2024

Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States.

Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment.

View Article and Find Full Text PDF

Cryo-EM structure of human TUT1:U6 snRNA complex.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.

U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.

View Article and Find Full Text PDF

Circular RNAs in the management of human osteoporosis.

Br Med Bull

January 2025

Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy.

Background: Osteoporosis (OP) is a metabolic bone disease producing reduction in bone mass with consequent bone fragility. Circular ribonucleic acid (CircRNA) is a form of RNA that forms a loop structure rather than a linear one. CircRNA can be used for therapeutic purposes, including molecular targets or to test new therapies.

View Article and Find Full Text PDF

Long non-coding RNAs as prognostic biomarkers in non-muscle invasive bladder cancer: A systematic review.

Narra J

December 2024

Division of Urology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Traditional prognostic tools for non-muscle invasive bladder cancer (NMIBC) often overestimate progression and recurrence risks, underscoring the need for more precise biomarkers. While long non-coding ribonucleic acids (lncRNAs) have been reviewed in bladder cancer, no review has focused on NMIBC. The aim of this study was to address this gap by investigating the role of lncRNAs in predicting NMIBC survival and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!