Download full-text PDF

Source

Publication Analysis

Top Keywords

[advanced digestive
4
digestive cancers
4
cancers intra-arterial
4
intra-arterial chemotherapy]
4
[advanced
1
cancers
1
intra-arterial
1
chemotherapy]
1

Similar Publications

To further the development of an in vitro model that faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from 3 donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell inserts, and confirmed transformation into a largely enterocyte population via RNA sequencing analysis and immunocytochemistry (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins.

View Article and Find Full Text PDF

Advances and insights into modeling extracellular electron transfer in anaerobic bioprocesses.

Sci Total Environ

January 2025

Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States. Electronic address:

Extracellular electron transfer (EET) plays an important role in maintaining redox balance in both natural and engineered anaerobic microbial systems, driving key biochemical processes such as energy generation, bioremediation, and waste degradation. While EET has been characterized in a limited number of microbes and applied in anaerobic digestion and bioelectrochemical systems, further research is needed to explore its mechanism across a broader range of microbial species and anaerobic processes. This review highlights advanced modeling frameworks that provide deeper insights into EET mechanisms and dynamics, aiming to optimize research efforts and minimize time and resource expenditure.

View Article and Find Full Text PDF

Disease continuum centered on Parkinson's disease.

Eur Neuropsychopharmacol

January 2025

Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, China. Electronic address:

Parkinson's disease (PD), once viewed as a neurodegenerative disorder, is now increasingly recognized as part of a broader disease continuum, intricately linked to comorbidities across various organ systems. This study provides a snapshot of the disease continuum centered on PD, using a disease-wide association study (DWAS) involving 392,423 individuals-including 4,235 PD cases. This DWAS identifies disease clusters of PD comorbidities across the musculoskeletal, circulatory, digestive, and respiratory systems.

View Article and Find Full Text PDF

Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.

View Article and Find Full Text PDF

The aim of this study was to determine the prevalence of advanced hepatic fibrosis and to individualize using Bayesian analysis its associated risk factors in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) being cared for in three Alsatian cardio-metabolic health networks in the North East of France. Overall, 712 patients aged ≥18 years with a female predominance were included into a prospective, cross-sectional, and observational study. Advanced fibrosis and severe steatosis were evaluated using transient elastography (FibroScan®).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!