Download full-text PDF

Source
http://dx.doi.org/10.1139/o73-085DOI Listing

Publication Analysis

Top Keywords

dissociation reassociation
4
reassociation phenylalanine
4
phenylalanine incorporation
4
incorporation chloroplast
4
chloroplast cytoplasmic
4
cytoplasmic wheat-leaf
4
wheat-leaf ribosomes
4
dissociation
1
phenylalanine
1
incorporation
1

Similar Publications

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity.

View Article and Find Full Text PDF

Shear thinning of associative polymers is tied to bond breakage under deformation and retraction of dangling chains, as predicted by transient network theories. However, an in-depth understanding of the molecular mechanisms is limited by our ability to measure the molecular states of the polymers during deformation. Herein, utilizing a custom-built rheo-fluorescence setup, bond dissociation in model end-linked associative polymers is quantified in real time with nonlinear shear deformation based on a fluorescence quench transition when phenanthroline ligands bind with Ni.

View Article and Find Full Text PDF

Structure of yeast RAVE bound to a partial V complex.

Proc Natl Acad Sci U S A

December 2024

Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

Vacuolar-type ATPases (V-ATPases) are membrane-embedded proton pumps that acidify intracellular compartments in almost all eukaryotic cells. Homologous with ATP synthases, these multisubunit enzymes consist of a soluble catalytic V subcomplex and a membrane-embedded proton-translocating V subcomplex. The V and V subcomplexes can undergo reversible dissociation to regulate proton pumping, with reassociation of V and V requiring the protein complex known as RAVE (regulator of the ATPase of vacuoles and endosomes).

View Article and Find Full Text PDF

The transthyretin (TTR) tetramer, assembled as a dimer of dimers, transports thyroxine and retinol binding protein in blood plasma and cerebrospinal fluid. Aggregation of wild type or pathogenic variant TTR leads to transthyretin amyloidosis (ATTR), which is associated with neurodegenerative and cardiac disease. The trigger for TTR aggregation under physiological conditions is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!