Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-5193(72)90141-5DOI Listing

Publication Analysis

Top Keywords

spin-lattice interaction
4
interaction water
4
water protein
4
protein membranes
4
membranes cell
4
cell metabolism
4
spin-lattice
1
water
1
protein
1
membranes
1

Similar Publications

Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.

Macromolecules

January 2025

Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.

This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.

View Article and Find Full Text PDF

Potential magnetic structure in EuInAsrevealed by magnetization and thermodynamic study.

J Phys Condens Matter

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

We systematically investigate the magnetization and thermodynamic responses associated with the antiferromagnetic (AFM) transitions in magnetic semiconductor EuInAs. The linear thermal expansion measurements reveal thataxis expands whereasandaxes contract with the onset of the two AFM transitions atTN1andTN2. Using a simplified mean-field model incorporating AFM exchange interactions, easy-axis anisotropy, and Zeeman coupling, we analyze the potential magnetic structure change associated with the spin-flop and spin-flip transitions in field.

View Article and Find Full Text PDF

Beating the Size-Dependent Limit with Spin-Lattice Coupling in Nanomagnetism.

J Am Chem Soc

January 2025

Institute of Process Equipment, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, Zhejiang, China.

Further miniaturization of magnetic nanomaterials is intrinsically accompanied by a reduction in spin ordered domains, resulting in size-dependent magnetic behaviors. Consequently, a longstanding roadblock in the advancement of nanodevices based on magnetic nanomaterials is the absence of a method to beat the size-dependent limit in nanomagnetism. Here, we discover and exploit a spin-lattice coupling effect in three-dimensional freestanding magnetic nanoparticles to beat the size-dependent limit for the first time.

View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Article Synopsis
  • Interstitial quasi-atomic electrons (IQEs) significantly influence the magnetism of crystalline electrides, with their own magnetic moments affected by nearby cations.
  • Weak spin-orbit coupling and limited interactions prevent these systems from achieving hard magnetism, presenting a challenge for stronger magnetic properties.
  • However, certain 2D electrides, like [ReC]·2e, exhibit permanent magnetism by creating a ferrimagnetic state and demonstrate high coercivity due to the interaction between Re-spin and IQE-spin lattices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!