Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0021-9290(72)90027-9 | DOI Listing |
Soft Robot
January 2025
i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, P. R. China.
Soft magnetic robots have attracted extensive research interest recently due to their fast-transforming ability and programmability. Although the inherent softness of the matrix materials enables dexterity and safe interactions, the contradiction between the easy shape transformation of the soft matrices and load carrying capacity, as well as the difficulty of independently controllable motion of individual segments, severely limits its design space and application potentials. Herein, we have proposed a strategy to adjust the modulus of shape memory polymer composite embedded with hard magnetic particles by Joule heating of printed circuit, which can reversibly change the stiffness from 4.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China.
Variations in the microstructural morphology with building direction during selective laser melting (SLM) result in the anisotropic mechanical properties of the specimens, while heat treatment effectively reduces this anisotropy. The degree of anisotropy of the material can be assessed by calculating the variance (σ) of the mechanical properties (strength, hardness) at different building directions at different temperatures. In this work, the effects of heat treatment temperatures (450°, 750 °C, and 1050 °C) and building directions (0°, 45°, 60°, and 90°) on the microstructure, hardness, and tensile properties of selective laser melting (SLM) SS316L were investigated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!