Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3181/00379727-141-36888 | DOI Listing |
Eco Environ Health
March 2025
College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China.
The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia.
Patterning soft materials with cell adhesion motifs can be used to emulate the structures found in natural tissues. While patterning in tissue is driven by cellular assembly, patterning soft materials in the laboratory most often involves light-mediated chemical reactions to spatially control the presentation of cell binding sites. Here we present hydrogels that are formed with two responsive crosslinkers-an anthracene-maleimide adduct and a disulfide linkage-thereby allowing simultaneous or sequential patterning using force and UV light.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.
View Article and Find Full Text PDFNucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; School of Materials Science and Engineering, Xinjiang Engineering Research Center of Environmental and Functional Materials, Xinjiang University, Urumqi, 830017, Xinjiang, PR China. Electronic address:
Antibiotic residues pose a significant threat to global health. Traditional detection methods for antibiotics are cumbersome, time-consuming and often incapable of achieving non-destructive detection at low temperatures. This research introduces a groundbreaking innovation in antibiotic detection: a flexible Surface-Enhanced Raman Scattering substrate based on a silver composite deep eutectic solvent (DES) gel, specifically engineered for low-temperature antibiotic detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!