The thermal transition of poly[d(A-r5U)] polydeoxynucleotides (where r was a hydrogen atom, or a methyl, ethyl, n-propyl, n-butyl or n-pentyl group) was studied by measuring the derivative melting profiles of the polymers in the range of 0.01--0.36 M K+, at pH 6.8. According to the Tm values, polydeoxynucleotide analogues show lower thermal stability than poly[d(A-T)] at any counterion concentration applied. At a given salt concentration, Tm of the alkyl analogues decreased as the number of carbon atoms (n) in the r substituent of poly[d(A-r5U)] increased. 1/Tm plotted against against 1/n yielded a linear relationship. Cooperativity of the melting of all poly[d(A--U)] analogues decreased with the increase of salt concentration in the solution. This change depended again on 5-substitution of the uracil moiety of poly[d(A-U)]. Smallest decrease was observed in the case of poly[d(A--U)] whereas largest decrease was shown by poly[d(A-pe5U)] (pe=pentyl group).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327897 | PMC |
http://dx.doi.org/10.1093/nar/6.8.2839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!