Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0035-2977(73)80044-6 | DOI Listing |
Sci Rep
January 2025
School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade, Serbia.
The expansion of LEAN and small batch manufacturing demands flexible automated workstations capable of switching between sorting various wastes over time. To address this challenge, our study is focused on assessing the ability of the Segment Anything Model (SAM) family of deep learning architectures to separate highly variable objects during robotic waste sorting. The proposed two-step procedure for generic versatile visual waste sorting is based on the SAM architectures (original SAM, FastSAM, MobileSAMv2, and EfficientSAM) for waste object extraction from raw images, and the use of classification architecture (MobileNetV2, VGG19, Dense-Net, Squeeze-Net, ResNet, and Inception-v3) for accurate waste sorting.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Networks and Cybersecurity, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.
Diabetic retinopathy stands as a leading cause of blindness among people. Manual examination of DR images is labor-intensive and prone to error. Existing methods to detect this disease often rely on handcrafted features which limit the adaptability and classification accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
With the rapid development of Internet of Things (IoT) technology, embedded devices in various computer vision scenarios can realize real-time target detection and recognition tasks, such as intelligent manufacturing, automatic driving, smart home, and so on. YOLOv8, as an advanced deep learning model in the field of target detection, has attracted much attention for its excellent detection speed, high precision, and multi-task processing capability. However, since IoT embedded devices typically own limited computing resources, direct deployment of YOLOv8 is a big challenge, especially for real-time detection tasks.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia.
Traumatic brain injuries present significant diagnostic challenges in emergency medicine, where the timely interpretation of medical images is crucial for patient outcomes. In this paper, we propose a novel AI-based approach for automatic radiology report generation tailored to cranial trauma cases. Our model integrates an AC-BiFPN with a Transformer architecture to capture and process complex medical imaging data such as CT and MRI scans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!