Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/jrf.0.0360363 | DOI Listing |
Sci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFACS Sustain Chem Eng
January 2025
Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, Chr. Magnus Falsens vei 18, Ås 1433, Norway.
Cellulose-derived biomaterials offer a sustainable and versatile platform for various applications. Enzymatic engineering of these fibers, particularly using lytic polysaccharide monooxygenases (LPMOs), shows promise due to the ability to introduce functional groups onto cellulose surfaces, potentially enabling further functionalization. However, harnessing LPMOs for fiber engineering remains challenging, partly because controlling the enzymatic reaction is difficult and partly because limited information is available about how LPMOs modify the fibers.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Eur J Med Chem
January 2025
Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:
Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!