Download full-text PDF

Source
http://dx.doi.org/10.1038/236453a0DOI Listing

Publication Analysis

Top Keywords

temperature equilibrium
4
equilibrium endplate
4
endplate potential
4
temperature
1
endplate
1
potential
1

Similar Publications

In this article, we present three mesoscopic models for water. All three models make use of local density-dependent interaction potentials, as employed within the Pagonabarraga-Frenkel framework [Pagonabarraga, I.; Frenkel, D.

View Article and Find Full Text PDF

Gas-phase and water-mediated mechanisms for the OCS + OH reaction.

Phys Chem Chem Phys

January 2025

Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.

We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.

View Article and Find Full Text PDF

Interfacial sorption of 17β-E2 on nano-microplastics: effects of particle size, functional groups and hydrochemical conditions.

Environ Res

January 2025

Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China. Electronic address:

Nano-microplastics and 17β-E2 have been frequently detected as emerging high-concern pollutants in aquatic systems, and their interaction at the solid/liquid interface has become a research focus in environmental studies. The interfacial sorption kinetics and equilibrium characteristics of 17β-estradiol (17β-E2) on nano-polystyrene (Nano-PS) with different particle sizes and organic functional group modifications were systematically investigated in aqueous environments in this study. The interfacial interaction mechanism between Nano-PS particles and 17β-E2 was elucidated by utilizing SEM, FTIR, XPS and BET techniques.

View Article and Find Full Text PDF

Algebraic Depletion Interactions in Two-Temperature Mixtures.

Phys Rev Lett

December 2024

Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.

The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.

View Article and Find Full Text PDF

MR imaging of proton beam-induced oxygen depletion.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!