Download full-text PDF

Source

Publication Analysis

Top Keywords

unusual mechanical
4
mechanical phenomena
4
phenomena directly
4
directly indirectly
4
indirectly cardiac
4
cardiac pacing
4
unusual
1
phenomena
1
directly
1
indirectly
1

Similar Publications

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

The linkage of an imidazole-based N-heterocyclic olefin (NHO), containing a terminal CH2 donor group, with a phosphorus-centered diradical molecular fragment leads to an open-shell singlet diphospha-indenylide system, a new class of P-heterocycles, which can be interpreted both as a phosphorus-centered diradicaloid and as a zwitterion with a permanent, overall charge separation between the N- and P-heterocyclic ring systems. The rotation of the imidazole ring, which is thermally possible due to a central C-C bond with a weakened π-component, changes both the charge separation and diradical character depending on the dihedral angle, as quantum mechanical calculations indicate. By varying the bulkiness of substituents at the imidazole-based NHO, it was possible to obtain different diphospha-indenylide species with different rotation angles in the solid state and hence varying diradical character.

View Article and Find Full Text PDF

Uncommon diterpenoids with diverse frameworks, including one unexpected iodinated oxa-6/6/6/6-tetracyclic diterpene () and its monobrominated 6/6/6-tricyclic analogue () and one novel isodolastane-type diterpene featuring an unusual aromatic 5/7/6-tricyclic ring system () as well as a related known dolastane-type diterpenoid (), were isolated from the South China Sea sponge . Their structures, including absolute configurations, were established by extensive spectroscopic data analysis, X-ray diffraction analysis, and quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory/electronic circular dichroism calculations. A plausible biosynthetic pathway of new compounds - was proposed.

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!