A qualitatively consistent integral interpretation of biochemical, electrophysiological, and biophysical data on nerve activity is given in terms of a basic excitation unit. This operational term models a dynamically coupled assembly of membrane components accounting for graded and all-or-none responses upon stimulation. The analysis contains a series of suggestions linking controversial interpretations and is aimed at stimulation of experimental studies providing the basis for a quantitative integral theory of nerve excitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC433345PMC
http://dx.doi.org/10.1073/pnas.70.3.727DOI Listing

Publication Analysis

Top Keywords

integral interpretation
8
attempt integral
4
interpretation nerve
4
nerve excitability
4
excitability qualitatively
4
qualitatively consistent
4
consistent integral
4
interpretation biochemical
4
biochemical electrophysiological
4
electrophysiological biophysical
4

Similar Publications

Background: Ultra-processed food (UPF) consumption has been linked with higher risk of mortality. This multi-centre study investigated associations between food intake by degree of processing, using the Nova classification, and all-cause and cause-specific mortality.

Methods: This study analyzed data from the European Prospective Investigation into Cancer and Nutrition.

View Article and Find Full Text PDF

This study evaluates three Machine Learning (ML) models-Temporal Kolmogorov-Arnold Networks (TKAN), Long Short-Term Memory (LSTM), and Temporal Convolutional Networks (TCN)-focusing on their capabilities to improve prediction accuracy and efficiency in streamflow forecasting. We adopt a data-centric approach, utilizing large, validated datasets to train the models, and apply SHapley Additive exPlanations (SHAP) to enhance the interpretability and reliability of the ML models. The results show that TKAN outperforms LSTM but slightly lags behind TCN in streamflow forecasting.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Background: The World Health Organisation (WHO) developed a comprehensive framework encouraging an integrated approach to achieve triple elimination of vertical transmission of HIV, syphilis, and hepatitis B in Asia. Current screening practices in Nepal show significantly lower coverage for syphilis and hepatitis B compared to HIV suggesting potential for integration. In this study, we aimed to model the cost-effectiveness of triple screening during antenatal care in Nepal.

View Article and Find Full Text PDF

Multiplexed Immunofluorescence (MxIF) enables detailed immune cell phenotyping, providing critical insights into cell behavior within the tumor immune microenvironment (TIME). However, signal integrity can be compromised due to the complex cyclic staining processes inherent to MxIF. Hematoxylin and Eosin (H&E) staining, on the other hand, offers complementary information through its depiction of cell morphology and texture patterns and is often visually cross-referenced with MxIF in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!