A mutation, car, determining resistance to several macrolide antibiotics, including carbomycin, has been identified in the alga Chlamydomonas as cytoplasmic, and mapped in the known cytoplasmic linkage group close to genes determining resistance to other antibiotics, including streptomycin, erythromycin, and spectinomycin. The effect of the car mutation on chloroplast ribosome function was demonstrated with an in vitro system incorporating amino acids especially developed to assess activity of 70S chloroplast ribosomes. In an S-30 extract containing both 70S chloroplast and 80S cytoplasmic ribosomes, low concentrations of Mg(++) and spermidine favored 80S ribosome activity, and high concentrations activated 70S ribosomes and reversibly inactivated the 80S component. Under conditions favoring chloroplast ribosome activity, carbomycin inhibited incorporation by an S-30 extract, and by purified 70S ribosomes from wild-type but not from car cells. These results show that cytoplasmic genes are directly involved in chloroplast ribosome function and they suggest that the car gene product is a ribosomal protein; the results further strengthen the evidence that the cytoplasmic linkage group is located in chloroplast DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC389819PMC
http://dx.doi.org/10.1073/pnas.69.12.3551DOI Listing

Publication Analysis

Top Keywords

ribosome function
12
chloroplast ribosome
12
determining resistance
8
antibiotics including
8
cytoplasmic linkage
8
linkage group
8
70s chloroplast
8
s-30 extract
8
ribosome activity
8
70s ribosomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!