Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-3956(74)90106-x | DOI Listing |
Endocrinology
July 2010
Neuroscience Program, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons secrete dopamine, which inhibits pituitary prolactin (PRL) secretion. PRL has demonstrated neurotrophic effects on TIDA neuron development in PRL-, GH-, and TSH-deficient Ames (df/df) and Snell (dw/dw) dwarf mice. However, both PRL and PRL receptor knockout mice exhibit normal-sized TIDA neuron numbers, implying GH and/or TSH influence TIDA neuron development.
View Article and Find Full Text PDFJ Neuroendocrinol
June 2009
Neuroscience Program, Tulane University School of Medicine, New Orleans, LA, USA.
The hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones secrete dopamine, which inhibits prolactin secretion. TIDA neurone numbers are deficient in Ames (df/df) and Snell (dw/dw) dwarf mice, which lack prolactin, growth hormone and thyroid-stimulating hormone. Prolactin therapy initiated before 21 days maintains normal-sized TIDA neurone numbers in df/df mice and, when initiated as early as 7 days, maintains the maximum TIDA neurone numbers observed in dw/dw development, which are decreased compared to those in normal mice.
View Article and Find Full Text PDFCan J Physiol Pharmacol
October 2008
Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China.
Sympathetic denervation is frequently observed in heart disease. To investigate the linkage of sympathetic denervation and cardiac arrhythmia, we developed a rat model of chemical sympathectomy by subcutaneous injections of 6-hydroxydopamine (6-OHDA). Cardiac sympathetic innervation was visualized by means of a glyoxylic catecholaminergic histofluorescence method.
View Article and Find Full Text PDFEndocrinology
April 2008
Neurobiology Program, Children's Memorial Research Center, Northwestern University, 2300 Children's Plaza, Chicago, IL 60614-3394, USA.
Pituitary prolactin (PRL) secretion is inhibited by dopamine (DA) released into the portal circulation from hypothalamic tuberoinfundibular DA (TIDA) neurons. Ames (df/df) and Snell (dw/dw) dwarf mice lack PRL, GH, and TSH, abrogating feedback and resulting in a reduced hypophysiotropic TIDA population. In Ames df/df, ovine PRL administration for 30 d during early postnatal development increases the TIDA neuron number to normal, but 30 d PRL treatment of adult df/df does not.
View Article and Find Full Text PDFTrends Neurosci
May 2007
Neurobiology Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund SE-22184, Sweden.
The basic organization of the catecholamine-containing neuronal systems and their axonal projections in the brain was initially worked out using classical histofluorescence techniques during the 1960s and 1970s. The introduction of more versatile immunohistochemical methods, along with a range of highly sensitive tract-tracing techniques, has provided a progressively more detailed picture, making the dopamine system one of the best known, and most completely mapped, neurotransmitter systems in the brain. The purpose of the present review is to summarize our current knowledge of the diversity and neurochemical features of the nine dopamine-containing neuronal cell groups in the mammalian brain, their distinctive cellular properties, and their ability to regulate their dopaminergic transmitter machinery in response to altered functional demands and aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!