Utilization of adsorbing materials for uremic blood purification.

Biomater Med Devices Artif Organs

Published: July 1975

Download full-text PDF

Source
http://dx.doi.org/10.3109/10731197409118598DOI Listing

Publication Analysis

Top Keywords

utilization adsorbing
4
adsorbing materials
4
materials uremic
4
uremic blood
4
blood purification
4
utilization
1
materials
1
uremic
1
blood
1
purification
1

Similar Publications

This investigation aims to apply the adsorption process to eliminate mequitazine and ethinylestradiol, the active molecules of Primalan and Diane, respectively, from aqueous solutions, utilizing biochar synthesized from pumpkin fruits (PB-500). The results revealed that the obtained adsorbent possessed a notable specific surface area, contributing to removal efficiencies of 66.61% and 62.

View Article and Find Full Text PDF

Acid mine drainage sludge (AMDS) can be utilized as a raw material to synthesize an efficient adsorbent through a more environmentally friendly approach for the removal of pollutants from water. In this study, iron ions were extracted from AMDS and then reacted with trimesic acid (BTC) under ambient conditions to synthesize Fe-BTC-, iron-based metal-organic frameworks. These materials demonstrate an exceptionally high specific surface area and excellent chemical stability.

View Article and Find Full Text PDF

Cost-Effective Synthesis of Carbazole-Based Nanoporous Organic Polymers for SO Capture.

ACS Appl Mater Interfaces

January 2025

International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.

Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!