The homing of pigeons.

Am Sci

Published: March 1975

Download full-text PDF

Source

Publication Analysis

Top Keywords

homing pigeons
4
homing
1

Similar Publications

Objective: To understand the prevalence, genetic diversity, and potential pathogenicity of adenoviruses present in pigeon and turtledove populations.

Methods: Nested PCR and Sanger sequencing methods were used to identify the genotype and percentage of various adenoviruses in the feces of pigeon (Columba) and turtledove (Streptopelia) populations. In Beijing, China, a total of 194 fresh feces samples from meat-use pigeons (C livia domestica), homing pigeons (C livia domestica), wild pigeons (C livia domestica), and turtledoves (S decaocto and S chinensis) were collected using noninvasive sampling collection techniques.

View Article and Find Full Text PDF

Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes.

View Article and Find Full Text PDF

The navigational mechanisms of homing pigeons, , have been extensively studied and represent a useful model for the navigation of birds and other animals. Pigeons navigate with an olfactory map and sun compass from unfamiliar areas and, in familiar areas, are largely guided by visual landscape cues, following stereotyped and idiosyncratic routes. However, the mechanisms by which they gain familiarity, improve their navigation and transition between navigational strategies during learning are not fully understood.

View Article and Find Full Text PDF

Homing pigeons (Columba livia) navigate by solar and magnetic compass, and fly home in idiosyncratic but stable routes when repeatedly released from the same location. However, when experienced pigeons fly alongside naive counterparts, their path is altered. Over several generations of turnover (pairs in which the most experienced individual is replaced with a naive one), pigeons show cumulative improvements in efficiency.

View Article and Find Full Text PDF

Background: Migrating birds fly non-stop for hours or even for days. They rely mainly on fat as fuel complemented by a certain amount of protein. Studies on homing pigeons and birds flying in a wind-tunnel suggest that the shares of fat and protein on total energy expenditure vary with flight duration and body fat stores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!