Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02532151DOI Listing

Publication Analysis

Top Keywords

glycosphingolipids human
4
human thyroid
4
glycosphingolipids
1
thyroid
1

Similar Publications

Fabry disease (FD) is a rare disorder resulting from a genetic mutation characterized by the accumulation of sphingolipids in various cells throughout the human body, leading to progressive and irreversible organ damage, particularly in males. Genetically-determined deficiency or reduced activity of the enzyme (alpha - Galactosidase; α-Gal) leads to the accumulation of sphingolipids in the lysosomes of various cell types, including the heart, kidneys, skin, eyes, central nervous system, and digestive system, triggering damage, leading to the failure of vital organs, and resulting in progressive disability and premature death. FD diagnostics currently depend on costly and time-intensive genetic tests and enzymatic analysis, often leading to delayed or inaccurate diagnoses, which contribute to rapid disease progression.

View Article and Find Full Text PDF

The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos.

Food Res Int

January 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.

The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms.

View Article and Find Full Text PDF

Clinical management of female patients with Fabry disease based on expert consensus.

Orphanet J Rare Dis

January 2025

Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Fabry disease is an X-linked lysosomal storage disorder that causes accumulation of glycosphingolipids in body tissues and fluids, leading to progressive organ damage and life-threatening complications. It can affect both males and females and can be classified into classic or later-onset phenotypes. The disease severity in females ranges from asymptomatic to the more severe, classic phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!