Download full-text PDF

Source

Publication Analysis

Top Keywords

growth vibrio
4
vibrio cholerae
4
cholerae cells
4
cells biochemical
4
biochemical electron
4
electron microscopic
4
microscopic study
4
growth
1
cholerae
1
cells
1

Similar Publications

Antibacterial and Cytotoxic Methylthioether-Containing Cytochalasins from AS-506, an Endozoic Fungus Associated with Deep-Sea Sponge of Magellan Seamounts.

J Agric Food Chem

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.

Ten cytochalasin derivatives, including six new methylthioether-containing chaetoglobosins (thiochaetoglobosins A-F, ), a new related congener (18-nor-prochaetoglobosin II, ), and three known unsulfured counterparts (), were isolated and identified from AS-506, an endozoic fungus isolated from a deep-sea sponge, which was collected from Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive interpretation of the spectroscopic and X-ray crystallographic data, as well as by ECD calculations. Structurally, thiochaetoglobosins A-F () represent the first examples of chaetoglobosin derivatives containing a methylthioether group in the molecules, while 18-nor-prochaetoglobosin II () is the first 18-nor-chaetoglobosin derivative.

View Article and Find Full Text PDF

Effects of low-salt stress on biological characteristics and transcriptomic profiles of Vibrio parahaemolyticus.

Int J Food Microbiol

December 2024

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China; Food Industry Chain Ecological Recycling Research Institute of Food Science and Technology College, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Studies have proved that halophilic Vibrio parahaemolyticus is widely detected in freshwater environments (salinity <0.5 %). However, the growth and colonization of V.

View Article and Find Full Text PDF

Vibriosis caused by Vibrio spp. is imposing severe havoc and adverse effects on shrimp culture. Antibiotics are the most widely used therapeutic measures against vibriosis.

View Article and Find Full Text PDF

Isolation and characterization of a from fish pond water.

Front Microbiol

December 2024

Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China.

Introduction: The intricate habitats of aquatic organisms, coupled with the prevalence of pathogens, contribute to a high incidence of various diseases, particularly bacterial infections. Consequently, the formulation of sustainable and effective disease management strategies is crucial for the thriving aquaculture sector.

Methods And Results: In this investigation, a strain of , designated , was isolated from a freshwater fish pond.

View Article and Find Full Text PDF

Unlabelled: Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify genes that promote pathogen fitness in stationary phase. We discovered that the aintenance of ipid symmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!