Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(74)90270-8DOI Listing

Publication Analysis

Top Keywords

decomposition bcnu
4
bcnu 13-bis2-chloroethyl-1-nitrosourea
4
13-bis2-chloroethyl-1-nitrosourea aqueous
4
aqueous solution
4
decomposition
1
13-bis2-chloroethyl-1-nitrosourea
1
aqueous
1
solution
1

Similar Publications

We found that carmustine can be stored in the carbon nanotube (CNT) interior for a long time due to hydrophobic interactions. The access of water to carmustine phase in the CNT interior can be controlled by the state of cytosine rich DNA fragments covalently bound to the CNT tips and to the presence of doxorubicin molecules intercalated within bundles of DNA fragments. More effective control of water access and subsequent decomposition of carmustine due to the contact with water was observed when some small amount of doxorubicin molecules cork the CNT ends.

View Article and Find Full Text PDF

The thioredoxin system facilitates proliferative processes in cells and is upregulated in many cancers. The activities of both thioredoxin (Trx) and its reductase (TrxR) are mediated by oxidation/reduction reactions among cysteine residues. A common target in preclinical anticancer research, TrxR is reported here to be significantly inhibited by the anticancer agent laromustine.

View Article and Find Full Text PDF

A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.

Free Radic Biol Med

July 2011

Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.

Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM.

View Article and Find Full Text PDF

Purpose: Resistance of neoplastic cells to the alkylating drug BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] has been correlated with expression of O (6)-methylguanine-DNA methyltransferase, which repairs the O (6)-chloroethylguanine produced by the drug. Other possible mechanisms of resistance include raised levels of glutathione or increased repair of the DNA interstrand cross-links formed by BCNU. Transcriptional profiling revealed the upregulation of several metallothionein (MT) genes in a BCNU-resistant medulloblastoma cell line [D341 MED (OBR)] relative to its parental line.

View Article and Find Full Text PDF

The antitumor, DNA-alkylating agent 1,3-bis[2-chloroethyl]-2-nitrosourea (BCNU; Carmustine), which generates 2-chloroethyl isocyanate upon decomposition in situ, inhibits cellular glutathione reductase (GR; EC 1.8.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!