Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect binding
4
binding nitrogen
4
nitrogen oxides
4
oxides gaseous
4
gaseous ammonia
4
ammonia occurrence
4
occurrence changes
4
changes central
4
central nervous
4
nervous system]
4

Similar Publications

Extracellular vesicle surface engineering with integrins (ITGAL & ITGB2) to specifically target ICAM-1-expressing endothelial cells.

J Nanobiotechnology

January 2025

Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18).

View Article and Find Full Text PDF

The ApoE ε4 allele (APOEε4) is a major genetic risk factor for sporadic Alzheimer's disease (AD) and is linked to demyelination and cognitive decline. However, its effects on the lipid transporters apolipoprotein E (ApoE) and fatty acid-binding protein 7 (Fabp7), which are crucial for the maintenance of myelin in white matter (WM) during the progression of AD remain underexplored. To evaluate the effects of APOEε4 on ApoE, Fabp7 and myelin in the WM of the frontal cortex (FC), we examined individuals carrying one ε4 allele that came to autopsy with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and mild to moderate AD compared with non-carrier counterparts.

View Article and Find Full Text PDF

Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.

Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).

View Article and Find Full Text PDF

This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose.

View Article and Find Full Text PDF

FMS-like tyrosine kinase-3 (FLT3), a class 3 receptor tyrosine kinase, can be activated by mutations of internal tandem duplication (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3-TKD), leading to constitutive activation of downstream signaling cascades, including the JAK/STAT5, PI3K/AKT/mTOR and RAS/MAPK pathways, which promote the progression of leukemic cells. Despite the initial promise of FLT3 inhibitors, the discouraging outcomes in the treatment of FLT3-ITD-positive acute myeloid leukemia (AML) promote the pursuit of more potent and enduring therapeutic approaches. The histone acetyltransferase complex comprising the E1A binding protein P300 and its paralog CREB-binding protein (p300/CBP) is a promising therapeutic target, but the development of effective p300/CBP inhibitors faces challenges due to inherent resistance and low efficacy, often exacerbated by the absence of reliable clinical biomarkers for patient stratification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!