Download full-text PDF |
Source |
---|
Nanomicro Lett
January 2025
Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
Potassium-ion batteries (PIBs) are considered as a promising energy storage system owing to its abundant potassium resources. As an important part of the battery composition, anode materials play a vital role in the future development of PIBs. Bismuth-based anode materials demonstrate great potential for storing potassium ions (K) due to their layered structure, high theoretical capacity based on the alloying reaction mechanism, and safe operating voltage.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
Synthetic organic dye such as methylene blue (MB) is non-biodegradable and highly toxic, released from textile wastewater. This work investigates the applicability of Ni@ZnO polymer nanocomposite for MB removal from the wastewater. To understand their differences before and after MB adsorption, composites' surface morphology was characterized by various techniques including scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transformation infrared (FT-IR) and UV-Vis spectrophotometer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
Anthropogenic CO emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China.
As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China.
Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology for sustainable energy generation. In this work, we introduce Nd sites boost the PEC performance of FeO photoanodes through a precise gas-phase cation exchange process, which substitutes surface Fe atoms with Nd. The incorporation of Nd significantly enhances charge transfer properties, increases carrier concentration, and reduces internal resistance, leading to a substantial increase in photocurrent density from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!