Download full-text PDF

Source

Publication Analysis

Top Keywords

organic contamination
4
contamination problems
4
problems viking
4
viking molecular
4
molecular analysis
4
analysis experiment
4
organic
1
problems
1
viking
1
molecular
1

Similar Publications

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection.

Nanoscale

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) data from agroecosystems in low- and middle-income countries is limited. We surveyed chicken (n = 52) and pig (n = 47) farms in Kenya to understand AMR in animal-environment pathways. Using LC-MS/MS, we validated the methods for analyzing eight common antibiotics and quantified the associated risks.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis.

J Environ Manage

January 2025

College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China. Electronic address:

The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!