Download full-text PDF

Source

Publication Analysis

Top Keywords

[pharmacokinetics thiamphenicol
4
thiamphenicol behavior
4
behavior acute
4
acute chronic
4
chronic hepatic
4
hepatic insufficiency]
4
[pharmacokinetics
1
behavior
1
acute
1
chronic
1

Similar Publications

Assessment of anti-MRSA activity of auranofin and florfenicol combination: a PK/PD analysis.

J Appl Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.

Aims: Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen with multidrug-resistant phenotypes increasingly prevalent in both human and veterinary clinics. This study evaluated the potential of auranofin (AF) as an antibiotic adjuvant to enhance the anti-MRSA activity of florfenicol (FFC) and established a pharmacokinetic/pharmacodynamic (PK/PD) model to compare the efficacy of FFC alone or in combination with AF against MRSA.

Methods And Results: We observed an increased susceptibility and significant synergistic effects of MRSA to FFC in the presence of AF.

View Article and Find Full Text PDF

Background: Bovine respiratory disease (BRD) is an economically important disease in the beef industry, and a major driver of therapeutic antibiotic use. Pharmacokinetic data of these drugs is relatively limited in diseased animals.

Hypothesis/objective: To determine the concentrations of pradofloxacin, florfenicol, and tulathromycin in the airways, plasma, and interstitial fluid (ISF) of steers with a clinically relevant model of bacterial respiratory disease.

View Article and Find Full Text PDF

Florfenicol (FF) is a widely used antimicrobial in veterinary medicine because of its broad antimicrobial activity, although it has certain limitations and raises concerns about the development of antimicrobial resistance genes. These limitations highlight the need to explore novel drug with controlled release systems to enhance the therapeutic efficacy of FF, while minimizing the potential for resistance development. This study introduces an innovative approach for the design, synthesis, and evaluation of lignin-poly(lactic-co-glycolic) acid (PLGA)-FF nanoparticles.

View Article and Find Full Text PDF

Biotransformation and oxidative stress markers in yellowfin seabream (Acanthopagrus latus): Interactive impacts of microplastics and florfenicol.

Sci Total Environ

December 2024

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy. Electronic address:

This study investigates the combined toxicity of microplastics (MPs) and florfenicol (FLO) on biotransformation enzymes and oxidative stress biomarkers in the liver and kidney of yellowfin seabream (Acanthopagrus latus). Fish were fed 15 mg kg of FLO and 100 or 500 mg kg of MPs for 10 days. Biomarkers, including ethoxyresorufin-O-deethylase, glutathione-S-transferase, superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde (MDA), and protein carbonylation (PC), were measured in both organs at 1, 7, and 14 days post-exposure.

View Article and Find Full Text PDF

Florfenicol is a broad-spectrum and bacteriostatic antibiotic with a time-dependent killing action. It is commonly used to treat respiratory diseases in goats in an extra-label manner. This study aimed to determine the plasma pharmacokinetics and milk residue depletion profiles and calculate the milk withdrawal interval (WDI) of florfenicol and its main metabolite florfenicol amine in lactating goats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!