Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0300-9629(72)90443-4 | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland.
Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan. Electronic address:
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Course of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan. Electronic address:
There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572024, China. Electronic address:
Rice is a major source of dietary cadmium (Cd), a toxic heavy metal that poses serious threat to human health. How rice takes up and accumulates Cd is not fully understood. Here, we characterize the function of a cation/H exchanger, OsCAX2, in Cd uptake in roots and Cd accumulation in shoots and grains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!