Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf60179a035 | DOI Listing |
Mol Plant Microbe Interact
January 2025
Phytopathologie und Pflanzenschutz, Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
IRCCS Fondazione Bietti, Roma, Italy. Electronic address:
Nitrite (NO) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.
View Article and Find Full Text PDFNat Chem
January 2025
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C-NO bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as -substitution SAr reactions, have been extensively explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!